Extensions 1→N→G→Q→1 with N=C22 and Q=C40⋊C2

Direct product G=N×Q with N=C22 and Q=C40⋊C2
dρLabelID
C22×C40⋊C2160C2^2xC40:C2320,1411

Semidirect products G=N:Q with N=C22 and Q=C40⋊C2
extensionφ:Q→Aut NdρLabelID
C221(C40⋊C2) = C4030D4φ: C40⋊C2/C40C2 ⊆ Aut C22160C2^2:1(C40:C2)320,741
C222(C40⋊C2) = Dic1014D4φ: C40⋊C2/Dic10C2 ⊆ Aut C22160C2^2:2(C40:C2)320,365
C223(C40⋊C2) = D20.31D4φ: C40⋊C2/D20C2 ⊆ Aut C2280C2^2:3(C40:C2)320,358

Non-split extensions G=N.Q with N=C22 and Q=C40⋊C2
extensionφ:Q→Aut NdρLabelID
C22.1(C40⋊C2) = D40.3C4φ: C40⋊C2/C40C2 ⊆ Aut C221602C2^2.1(C40:C2)320,68
C22.2(C40⋊C2) = C22.2D40φ: C40⋊C2/Dic10C2 ⊆ Aut C2280C2^2.2(C40:C2)320,28
C22.3(C40⋊C2) = C23.38D20φ: C40⋊C2/Dic10C2 ⊆ Aut C22160C2^2.3(C40:C2)320,362
C22.4(C40⋊C2) = C23.30D20φ: C40⋊C2/D20C2 ⊆ Aut C2280C2^2.4(C40:C2)320,25
C22.5(C40⋊C2) = C40.Q8φ: C40⋊C2/D20C2 ⊆ Aut C22804C2^2.5(C40:C2)320,71
C22.6(C40⋊C2) = D40.4C4φ: C40⋊C2/D20C2 ⊆ Aut C22804+C2^2.6(C40:C2)320,74
C22.7(C40⋊C2) = C20.4D8φ: C40⋊C2/D20C2 ⊆ Aut C221604-C2^2.7(C40:C2)320,75
C22.8(C40⋊C2) = C23.34D20φ: C40⋊C2/D20C2 ⊆ Aut C22160C2^2.8(C40:C2)320,348
C22.9(C40⋊C2) = C20.39C42central extension (φ=1)320C2^2.9(C40:C2)320,109
C22.10(C40⋊C2) = C2×C20.44D4central extension (φ=1)320C2^2.10(C40:C2)320,730
C22.11(C40⋊C2) = C2×C406C4central extension (φ=1)320C2^2.11(C40:C2)320,731
C22.12(C40⋊C2) = C2×D205C4central extension (φ=1)160C2^2.12(C40:C2)320,739

׿
×
𝔽